1999-06-28[n年前へ]
■風呂場の水滴を考える。 
オールヌードの研究員
風呂場の天井から浴槽めがけて、水滴がしたたって音がしているのはよくある風景である。ピーンという(もちろん人によっても印象は違うのだろうが)気持ちのいい音がしている。似たようなものとしては、水琴窟などもある。この音がなぜ鳴るかは、ロゲルギストの「物理の散歩道」に詳しい考察がある。それによれば、水滴が一粒落ちたように見えても、実は何粒かに別れており、ちょうどカルガモの親子のようになっているという。つまり、大きな親の水滴の一粒の後を、何粒かの小さな子どもの水滴が追いかけているという具合である。まず、水滴の親が水面に空洞をつくり、その中に子どもの水滴が飛び込むことにより音が出るという。結局、水滴の音を作っているのは、その子どもの水滴の方だという。「物理の散歩道」の中では、針をつたって水滴を落とせば、子どもの水滴ができないという。
風呂に入って、濡らした手から水滴を落としてみる。指の爪の先から水滴を落とすと音はほとんどしないが、指の「はら」から落とすと派手に音がする。ぜひ、自分でも確かめていただきたい。
爪先は比較的尖っているので、落ちる水滴は一粒だが、比較的平らな指の「はら」からの場合には、カルガモ親子のような水滴が落ちているせいだろう。
なぜ、このような違いが生じるかを推測してみたい。まずは、下の絵を見て欲しい。
![]() | ![]() |
上の上手な絵が言いたいのは、次のような推測である。
- 平らな表面から水滴が落ちる際には、長く伸びた水のブリッジが出来ていて、1つぶ目の水滴が落ちた後も、このブリッジ部分が「カルガモの子ども」のように小さな水滴となって後を追いかけていくのではないか。
- それに対して、尖った表面から水滴が落ちる際には、先のブリッジ部分のほとんどは水でないため、後続の水滴は発生しない。
計算モデルとしてどのようなものを使うかであるが、私の知っている範囲では大きく分けて2種類のやり方がある。
- 流体をモデル計算する。すなわち、Navier-Stokesの方程式を解く。
- 流体を粒子のようなものの連続体として解く(ex.格子ボルツマン法)
電気通信大学情報工学科情報数理工学講座渡辺研究室( http://assam.im.uec.ac.jp/fluid.html )
![]() |
また、水滴が水面に衝突する状態の計算は、電気通信大学情報工学科情報数理工学講座渡辺研究室にもあるし、他にもNaSt2DというFreeの2次元Navier-Stokes方程式のソルバーを用いて行われた計算結果が
http://www5.informatik.tu-muenchen.de/forschung/visualisierung/praktikum.html
にある。
![]() |
Michael Griebel氏らによるNast2Dのコードは公開されているので、その中身をいじりながら、計算を行う予定である。
とりあえず、今回はバックグラウンドを紹介する所までで、次回(といってもすぐではないだろう)に計算の本番に入りたい。
手のひらの実験から考えると、風呂場で水滴の音が聞こえるのは天井が平らなせいだということになる。ならば、鍾乳石のようなつらら形状の天井の風呂場では音がしないのだろうか?しかし、水滴は空気中で落下していく最中には空気の抵抗をうける。そのため、大きな水滴は落ちる最中に分裂し、複数の水滴になってしまう。
となると、
- 落ちる水滴の最初の大きさは、どう決まっているのか。
- 水滴は落下するスピード、水滴の大きさがどの程度になると分裂するのか?
ところで、インクジェット方式のカラープリンターも液滴で画像を描くのだから、液滴の様子は重要な筈である。液滴が飛び散ってしまっては困るし、位置がずれても困る。各社ともカルガモの子ども水滴をなくすために色々工夫をこらしている筈だ。
実は風呂場の水滴問題は重要で、奥が深いのだ。オールヌードで私は考えるのであった。
1999-11-09[n年前へ]
■埋蔵金を探せ 
電子ブロックで金属探知機を作りたい その1
Yahoo!のオークションでこんなものを買った。オークションで落札したのは一つ(EX-60)なのであるが、あとから別口でもう一個(EX-100)手に入った。
![]() |
手に入ったのはいいのだが、お金が飛んでいってしまった。困ったものである。さて、EX-60の拡大したところも示してみる。
![]() |
これを見て懐かしく感じる人も多いはずだ。少なくとも、私の職場ではかなりの比率(80%位か)の人がこれで遊んでいたようで、
「オレはマイキットだった。」とか、などと、声があがった。しかし、新入社員位になると、
「もっとずっと前のスケルトンになる前のを持ってた。」
「おもちゃ屋の店頭で欲しくて眺めてた。」
「何ですか、これ?」などと言う。ジェネレーションギャップである。いや、もちろん私と年がそんなに離れているわけではないのだが...
「欲しかったのに、買えなかったのですか?」
さて、
- 電子ブロックホームページ (http://www.jade.dti.ne.jp/~dbk-co/ )
私自身が持っていたものはSTシリーズというものだった。これは、EXシリーズよりも一世代前のもので、デザインなどはずいぶん違う。スケルトンと白・青を基調としたデザインで、今売り出しても人気が出るのではないかと思える。シンプルながらレトロ調なところがいい。しかも、「組み立ててその上面をそのままコピーすれば、回路図も出来あがる」という素晴らしいものである。素晴らしい開発環境である。
自分で遊んでいた機種でないせいもあって、今回手に入れたEX-60,100を眺めていても、それほど懐かしいわけではない。私自身が遊んでいた機種は、手に入れたいとは実は思わない。昔見た夢は、リアルに蘇らない方がいい、と思うのである。昔埋めた玩具はそのままにしておく方が幸せなのである。
ところで、「昔埋めたもの」と言えば埋蔵物である。ならば、「昔埋めた夢」は埋蔵金だろう。別に、「夢= 金」という切なくなるような等式を持ち出すつもりはない。別に、お金が飛んでいってしまったせいで、お金に目が眩んでいるわけでもない、と思う。しかし、埋蔵金は男のロマンである。埋蔵金のために人生を棒に振る人がいるというのも、当然である。何しろ、男のロマンなのだ。どこぞのTV局が発掘をしまくるのも、当たり前である。
ちなみに私は埋蔵物発掘のアルバイトもしたことがあるが、それは正に「男の仕事」であった。知らない人が見たならば、それは土方にしか思えなかったろう。そのバイトの名前を知っている私にも、土方にしか思えなかった。埋蔵物探しとはそういうものなのである。
埋蔵金が実際に発掘されることはほとんどない。それにも関わらず、埋蔵金伝説は腐るほど存在する。金は腐ることはないにも関わらず、埋蔵金伝説は腐るほどあるのだ。
大体、どこの地方にも「朝日さす夕日輝く...」という言い伝えがあるはずだ。母と言えば垂乳根であるが、埋蔵金と言えば「朝日...」なのである。ただ、これにも多少のバリエーションがある。もしかしたら、そのバリエーションを探れば、蝸牛考ばりの考察ができるかもしれない。いや、本当にしてみようかな... それは、いつかやてみることにしよう。
さて、埋蔵金情報を探してみる。すると、
- TREASUREJAPAN ( http://www.bekkoame.ne.jp/~m1911a1/treasure/treasure.htm)
- 香貫の埋蔵金 N市上香貫、下香貫 -> かつて香貫一帯には九十九塚の古墳群があり、埋蔵金の伝承も残されている。「朝日さす夕日かがやく柿木の下に黄金千盃二千盃」。
- 釈迦堂の埋蔵金 N市西野字霞釈迦堂 -> 愛鷹山の中腹にある釈迦堂に残る長者の黄金伝説。「朝日さす夕日かがやくこの所、黄金千盃朱千盃」。こちらも古墳群が存在した。
![]() | ![]() |
そう、めちゃくちゃ近い所に埋蔵金は埋まっているのである。そこで、散歩がてら埋蔵金を探してみることにした。しかし、そうそう簡単に埋蔵金が手に入るわけはない。どこに金塊が埋まっているのか、調べる道具が必要である。
そこで、埋蔵金探しには必需品の「金属探知器」を作るにした。しかも、せっかく「電子ブロック」が手に入ったのだから、これを使って作ってみたい。
そこで、まずは金属探知器の仕組みを調べてみた。すると、いろいろやり方はあるがLC発振回路を用いたものが一番簡単そうである。今回の道具はなにしろ電子ブロックである。単純第一でなければやってられない。
このLC発振回路を用いたものはコイルをセンサーとして用いるものである。コイルに金属が近づくことによるインピーダンスの変化を検出するものだ。二つの発振回路を用いて、ヘテロダイン方式で発振周波数の変化を検知するのが一般的なようだ。
最初の計画では、EX-60,100それぞれでLC発振回路を組んで、その差をアンプに通してスピーカーから鳴らそうと考えた。やってやれないことはないだろう、と考えた。そして、電子ブロックと格闘し始める。そして、2時間後...
「あ"〜〜〜〜。やってられるかぁ! こんな作業〜〜〜〜」
電子ブロックEX-60&EX-100は、部品数が少ない。トランジスターは1つしかないし、抵抗・コンデンサーの数も3個位しかない。しかも、回路構成がまるでパズルである。平面構造と言えば聞こえは良いが、回路を自分で考え出すのがこんなに大変だとは思わなかった。
始める前は「ブレッドボードの祖先だから、作業は結構楽かもね」、なんて思った。しかし、それは大きな間違いであった。
電子ブロックを作った人達は天才である。
![]() |
電子ブロックも埋蔵金も共にロマンである。そして、共にかつて埋めた夢だ。昔埋めたおもちゃは蘇らない方が良い。しかし、埋蔵金は私の手元に出現してくれるとうれしい。そのために私は、何としても電子ブロックで「金属探知器」を作り上げなければならない。そして、それを片手に、埋蔵金を探し出すつもりだ。
こうして、金に目がくらんだインスタント埋蔵金ハンターは、電子ブロックを相手に格闘を続けるのである。というわけで、今回は「背景説明編」である。近いうちに、必ずやこの続編と共に、ゲイツくんもビックリの金塊を手中にする所存である。
そして、私が見つけた素晴らしい埋蔵物の話も書きたいところであるが、それはまた次回ということにしておこう。
1999-12-21[n年前へ]
■恋の力学 
恋の無限摂動
クリスマスが近くなると、街のイルミネーションが綺麗に輝き始める。いかにも、ラブストーリーが似合う季節である。そこで、今回は、"Powerof love"、すなわち、「恋の力」について考えてみたいと思う。「恋の力」により、人がどのような力を受け、人がどう束縛されるのか、などについて考えみたいのである。また、恋に落ちたカップルがどのような行動をするのかについて解析を行ってみたい。
「できるかな?」では以前、
において、カップルが他のカップルを意識する力について考えたことがある。カップル同士の間に働く斥力を考えることにより、鴨川カップルの行動を考えてみた。それと同様に、今回はひとつのカップルのみを考え、その中に働く力を考えてみるのである。ひとつのカップルの「男」と「女」の間にどのような力が働くかを考えるのである。そういうわけで、今回の登場人物は「男」と「女」である。その二人は「恋に落ちた二人」である。二人の間には「恋の力」が働いているのだ。その二人の間に働く「恋の力」について考察することにより、恋に落ちたカップルの行動について考察を行ってみることにする。
といっても、「恋の力」を精密に測定した報告例は未だ存在しないので、ここでは適当な値を用いていくことにする。「恋は距離に負けない」とか「遠くて近きは男女の仲」などとははよく言われる。そこで、距離によらないと近似した。また、「遠くて近きは男女の仲」の意味を考えれば、恋の力は無限遠まで働く力である、と考えるのが自然である。
そこで、今回の「恋の力」は距離に関わらず一定であると仮定した。距離=rとした時に-r/Abs[r]の大きさで「相手に惹かれる」ものとした。仮に第一種「恋の力」(仮称)とでもしておく。
今回は「恋の力」は距離によらないものとした。しかし実際は、(通所の距離においては)「男」と「女」は距離が近いほど惹かれ合うし、離れてしまうと惹かれ合う力は弱くなるというのが自然であると思われる。そこで今回の第一種「恋の力」(仮称)は、あくまで大雑把な近似ということにしておく。
恋する二人の間に働く力をもう少し正確に記述しておくと、
- 「恋の力」 = - 「相手の魅力」 * 「二人の間の距離ベクトル」 / 「二人の間の距離スカラー」
- 「恋の力」=優柔不断度 * 「恋の加速度」
であることだ。心がトキメいてもなかなか行動を起こすことが出来ない人がいるだろう。そういう人は「優柔不断度」が高いというわけである。恋の行動における慣性を示すパラメータである。
また、今回は空間を1次元であると簡略化してみた。1次元の空間の中で「男」と「女」が動き回るのである。その時間的変化を調べてみるのだ。従って、シミュレーション結果は空間軸が一次元+時間軸一次元で、合わせて2次元となる。
さて、この「恋の運動方程式」を解くことにより、恋する二人の行動は予測することが可能となるわけだ。試しに、その計算サンプルを示してみる。なお、今回は時間方向で数値的に逐次解を求めている。
初期状態は
- 「男」位置=5, 速度=0,魅力=100,優柔不断度=10
- 「女」位置=0, 速度=0,魅力=100,優柔不断度=10
位置や時間の単位は任意単位である。「0」と「5」は東京と大阪であっても良いし、ロンドンとニューヨークであっても良い。あるいは、実空間でなく精神的な空間と考えてもらっても構わない。すなわち、心の動きを示しているものとするのである。
また、二人の「魅力」や「優柔不断度」は対等である場合だ。その結果を下に示す。このグラフは縦軸が空間位置であり、横軸が時間である。黒線が「男」であり、赤線が「女」である。
![]() |
「男」と「女」が同じように相手の方向へ向かっているのがわかると思う。これが「恋の無限摂動」である。こういった「恋の無限摂動」の代表的なものには「君の名は」の主人公達の動きなどがある。恋に落ちた二人が、延々とすれ違いを続ける物語である。これは、この「男」と「女」の行動そのものである。
この計算結果では「男」と「女」が糸を紡いでいるようにうまく絡みあっているのがわかる。「恋の無限摂動」の幸せなパターン例である。これは、「男」と「女」が対等であったことがその一因である。
その証拠に、「男」と「女」が対等でない場合の計算結果を示してみる。次に示すのは、
- 「男」位置=5, 速度=0,魅力=10,優柔不断度=10
- 「女」位置=0, 速度=0,魅力=100,優柔不断度=10
![]() |
「男」が右往左往するのに対して、「女」はほとんど動いていないのがわかると思う。おそらく、この場合には「男」と「女」の「心」もこれと同様のパターンを示しているものと思われる。すなわち、「男」の「心」は揺れ動いているのに対し、「女」の「心」はほとんど動いていないのである。
先の例と異なり、これは実に不幸な計算例である。不幸ではあるが実際によくある例であると思う。以降、これを「男はつらいよ」パターンと呼ぶことにする。「女」に「男」が振り回されているパターンだ。もし、奇跡的に結婚などしても、将来どうなるかは火を見るより明らかである。
それでは、「男」と「女」の「魅力」が同等で、かつ、とてもスゴイ場合を示してみる。すなわち、ドラマの主人公達のようにとてつもなく魅力的な二人が恋に落ちた場合である。一般人とは違う二人が恋に落ちたら、果たしてどのような行動を示すのであろうか?この場合のパラメータは以下に示す、
- 「男」位置=5, 速度=0,魅力=1000,優柔不断度=10
- 「女」位置=0, 速度=0,魅力=1000,優柔不断度=10
![]() |
「魅力ある二人が恋に落ちた場合には、あまり近づかない方が良い」という教訓をここから得ることができる。
最後に、「男」と「女」の二人ともにあまり魅力がない場合である。パラメータとしては、
- 「男」位置=5, 速度=0,魅力=2,優柔不断度=10
- 「女」位置=0, 速度=0,魅力=2,優柔不断度=10
![]() |
これなど「恋」と言えるのかどうかもわからない位である。ほとんど、「ただすれ違っただけの相手」である。これがさらに進むと、魅力がお互いに0同士のパターン、
- 「男」位置=5, 速度=0,魅力=0,優柔不断度=10
- 「女」位置=0, 速度=0,魅力=0,優柔不断度=10
![]() |
これっぽっちも「男」と「女」は「恋」に落ちていないのである。これではカップルの「男」と「女」ではなく、単なる他人である。
さて、今回は行わなかったが、カップルに「恋のエネルギー損失」を導入することにより、「恋の無限摂動」を減衰させることができる。それにより、現実のカップルの行動にさらに近づくことができるのではないかと、私は考える。何らかの抵抗が生じることにより、「恋の無限摂動」が減衰するのだ。そして、二人は接近した状態で停止するわけだ。
さて、今回の登場人物は「男」と「女」だけであった。しかし、現実でも、ドラマの中でも、通常は多くの登場人物が登場する。登場人物が「男」と「女」だけというような理想的な条件のみではない。
人の恋路を邪魔する(主人公からすれば)ヤツも必ず登場する。また、特定の登場人物の間では斥力が働くだろう。そのような場合、一体どのような現象が生じるのだろうか。
そもそも、今回の恋する二人の行動パターンは予測可能であったが、現実そのようなことがあるだろうか?果たして、未来の行動パターンは予測可能なのだろうか?色々な登場人物が現れる場合にも、今回の結論は成立するのだろうか?
それらは次回の課題にしておく。題して、「恋の力学 三角関係編- 恋の三体問題- (仮称)」である。「恋の力」を一般化し、多体問題として解いてみたいのである。恋する人達とその周りの人達がどのような行動をするか、恋の三角関係においてどのような力が働いているのか、について解析を行ってみたい。今回は、そのための前準備というわけである。
2000-01-21[n年前へ]
■数字文字の画像学 
縦書きと横書きのバーコード
始まりはまたしても「物理の散歩道」である。
- 「新物理の散歩道」 第一集 ロゲルギスト 中央公論社
さて、その中の-横組・縦組と二つの目-という一節中の外山滋比古氏の発言が実に面白い。
「日本の漢字は横の線が発達してますから、横から読みますと目に抵抗が少なくて読みにくいですね。ヨーロッパの文字は縦の線が非常に発達していて、横に読むと非常に能率がいいわけです。数字でも縦の棒を引いて、Ⅰ、Ⅱ、Ⅲ、Ⅳ....としますが、和数字は横に線を引いて一、二、三...となります。...」という発言である。
- 文字は読む方向に対して垂直な線が多い
- また、読む方向に対して水平な線は少ない
- いずれも目のスキャン方向に対して垂直な線が多い
そこで、今回その確認と考察を行ってみることにした。サンプルとしては、外山滋比古氏の発言の通り、ローマ数字と漢字数字を用いることにする。
まずは、本来の書き方の方向に数字を並べた画像である。画像サイズは128x128である。後の処理のために、縦横比を同じにした。すなわち、本来の画像のアスペクト比とは異なる。
![]() | ![]() |
この二つの画像を読む方向に目を走らせると、まるでバーコードのようである。以前、
の時に作った郵便カスタマバーコードを参考に示してみる。考えてみると、バーコードは検出手段をバーコードの進行方向に走らせて、情報を読み取るわけである。人間が数字の羅列を読み取るのも、数字文字列上に目を走らせるのであるからまったくもって同じである。
一次元バーコードを考えた時、バーコードのバーは進行方向に対して垂直なものがほとんどである(若干のアジマス角を持つものもあるが)。バーコードを読み取る方向に対してのみ情報が書き込まれているのだから、それ以外の方向には等方的であるのが当然である。もし、そうでなかったらスキャン位置がちょっとずれただけでデータの読み取りができなくなってしまう。
そう考えると、先の数字文字に関する
- 読む方向に対して垂直な線が多い
- 読む方向に対して水平な線は少ない
また、本来の数字文字を並べる方向が読み書きの方向と異なる場合を以下に示す。
![]() | ![]() |
さて、画像を並べるだけではつまらないので、
- 本来の書き(並べ)方
- 本来の書き方と異なる書き(並べ)方
人間の目が数字文字列上をスキャンしていくときに、選られる情報量を考えるために、読む方向に対して画像を微分したものを示す。もう少し正確に言えば、微分値の絶対値を画像にしたものである。
まずは、本来の書き(並べ)方のものを示す。
![]() 818892 | ![]() 923836 |
微分画像の下に示した数字は微分(して絶対値)画像のピクセルの値の総和である。これをスキャン方向に対して選られる情報量の指標として扱うことにする。「スキャン方向に対して変化量が大きいということは、情報量が多い」ということだからである。
次に、本来の書き方と異なる書き方の場合を示す。
![]() 536383 | ![]() 632338 |
それでは、「微分(して絶対値)画像のピクセルの値の総和」を比較してみることにしよう。
| 本来の書き方の場合 | 818892 | 923836 |
| 本来の書き方と異なる場合 | 536383 | 632338 |
ローマ数字、漢字数字の両方で、本来の書き方の方が(読む方向に対する)画像の変化量が大きいことがわかる。すなわち、「目のスキャン方向に対して選られる情報量」が多く、そうでない方向には冗長なのである。エラー発生率が小さくなるのである。本当にバーコードそのものである。文字はバーコードの祖先だったのである。
さて、「文字の画像学」も色々と面白そうなので、これからちょこちょこ遊んでいこうと思う。
2000-01-31[n年前へ]
■落ちゆくエレベーターの中…で悩みます? 
無重力の理想と現実(仮)
今日もまた「ちゃろん日記(仮)」を読みに行くと、何とも面白い話があった。
である。この「ちゃろん日記(仮)」は「疑問とそこに隠れている真実を見つけだす感覚」に満ち溢れている、と私は思うのである。面白すぎである。さて、今回の話は、エンパイアステートビルでエレベーターが落ちたっていうけど、落ちていくエレベーターの中の人は
- 床に張り付く
- 天井に張り付く
- 宙に浮かぶ
「ほんとう〜にそうか? ほんとう〜にそうか?」
こういういかにも教科書に載っていそうな話には、時として落とし穴がある。教科書に書いてあるのは理想的で単純化した場合の結果である。それを鵜呑みにすると間違えてしまうことになる。極端に言えば、教科書に書いてあるような理想的な状態はほとんど存在しないので、教科書に書いてあるような現象はそうそう再現しない、ということになる。
ピサの斜塔から「落下の実験」を行ったのはガリレオ・ガリレイであると思っていると間違いである、というのは少し違う例になってしまうか。
久しぶりに思い出したが、私の所属していた研究室では重力測定は大きな柱であった。そして、確か大学院の入試問題の内の一題は、まさに
「落ちていくエレベーターの中の人達に働く力を精密に論ぜよ」であった(簡単に大雑把に言えば)。私はちゃんとこの問題を解けた覚えがない。いや、はっきり言えばずいぶん悩んだ覚えしかない。ってことはいまいち解けなかったのだろう。なので、「落ちていくエレベーターの中の人達は無重力状態である」と聞くと、「ほんとう〜にそうか? ほんとう〜にそうか?」と歌いたくなる。
研究室関連では、絶対重力測定を行う研究をする人達もいたわけである。絶対重力(加速度)測定は自由落下する物体の運動を測定して、重力加速度を測定するわけであるが、そう簡単に物体は自由落下してくれないのである。簡単な実験で物体を自由落下させて重力加速度を測定してみるとわかるが、大雑把な実験(自分の家ですぐできる程度の)では一桁ちょいの精度しか出ない。一桁ちょいの精度しかでないということは、(例えば)体重が10%弱程度になったように感じるかもしれないが、それは無重力ではない。体重が60kgの人であれば、6kgも感じてしまうのである。(雑な話だが。)
空気中を落ちてくる雨だってそうだ。もし、雨が自由落下を続けていたらものすごいスピードになって、雨に打たれるのは命がけになってしまう。しかし、実際にはそんなことはない。空気抵抗で速度は飽和してしまい、自由落下状態ではないからである。
さて、本題である。果たして、
例えば、
- 若井研究室の研究概要
- http://mech.gifu-u.ac.jp/~wakailab/research/Basic/base_h.html
北海道の上砂川町にある施設(JAMIC)で、490m落下させることにより、10秒の無重量環境が得られます。落下中は空気抵抗を受けるので、落下カプセルを二重構造にし、空気抵抗を無視できるように工夫してあります。と、記述されているように、実際には工夫をこらさなければ無重力状態は実現できないのである。絶対重力系などでも空気抵抗を無視するために、投げ上げて往復運動を測定するなどの工夫がいるのである。
と、言葉だけで書いてもしょうがないので、適当な計算でもしてみる。いや、もちろん、実験をするのが良いわけであるが、面倒だし…
まずはエレベーターには、
- 何の抵抗も働かない
- 空気抵抗とワイヤーの抵抗が働く
そして、エレベーターの中の人には空気抵抗は働かないとした。エレベーターの中の空気と人の速度差はほとんどないからである。また、エレベーターは人よりもはるかに重く、人の重さはエレベーターの運動に何の影響も及ぼさないと近似した。
その計算の結果を以下に示す。これが落ちていくエレベーターの軌跡である。抵抗のない場合が(赤)で抵抗のある場合が(青)である。エレベーターが落ち始めてから30秒後までの軌跡である。
![]() |
理想的な場合(赤)に比べて、抵抗のある場合(青)の落ち具合が鈍っているのがわかると思う。それでは、もっと時間が経った場合はどうだろうか?それを次に示す。エレベーターが落ち始めて300秒後までの軌跡である。つまり、五分間もこのエレベーターは落ち続けているのである。落ちた距離は理想的な場合で40kmの深さに達している。すごいエレベーターである。こんなに落ち続けていると、すでに重力加速度が一定とは言っていられなくなる。
![]() |
ここまでくると、抵抗のない場合(赤)と抵抗のある場合(青)では全然違う軌跡になっている。抵抗のない場合(赤)では放物線そのものであるが、抵抗のある場合(青)では一定の速度になっている。
それでは、エレベーターがこのような状態になった時の、エレベーターの中の人に働く加速度(と実際の加速度の差分)を示してみる。これを見れば、落ちていくエレベーターの中の人が無重力状態であるかどうかがわかる。まずは、300秒後までの変化を見てみる。
![]() |
理想的な場合(赤)はずっとゼロすなわち無重力状態であるが、抵抗のある場合(青)は無重力状態は最初だけで、50秒後位には通常の状態に戻ってしまっている。最初の部分をもう少し拡大してみる。次に示すのは、3秒後までの落ちていくエレベーターの中の人に働く重力加速度(と実際の加速度の差分)である。
![]() |
これを見ると、あっという間に人は無重力状態ではなくなっているのがわかると思う。
というわけで、先の三つの選択肢、
- 床に張り付く
- 天井に張り付く
- 宙に浮かぶ
先日みたニュースのエレベーター落下実験の中で、中にいた男性リポーターが、落下しながら「ひぃ?」とアオ向けになった状態で床にハリ付いていたからなのです。という実際の現象が正しいのである(いや、もちろん状況はかなり異なるが)。「頭の中だけ」で考えたことというのは大抵の場合間違ってしまう。(もちろん、今回の「できるかな?」の話もその例外ではない)
そして、その後に、
ありはきっと、速度がそこまで充分でなかったのと、もしやのトキのために、男性リポーターに安全な姿勢をとらせていたタメだと思われます。とあるが、実際問題として「速度がそこまで充分」になることは未来永劫ないわけである。だから、(私の中では)エレベーターの中の男性リポーター氏は床から浮かぶことはないのである。
こういうのは、結局考える人の数だけ答えがあるのだと思う。もし、その内のどれが真実に一番近いかどうか知りたければ、実験すれば良いだけの話だし。
























